- Or how spread out is the data.
- Range = high value - low value
- Example
Find the range of this data set
5 9 3 12 20 1 3 5 3
High = 20
Low = 1
Range = 20-1 = 19
- The standard deviation describes how spread out ALL of the data is.
- s2 = Σ(x-x)2/(n-1)
- To do this:
- Calculate x
- Set up a table with the following columns
- Write the data items in the x column
- Calculate the values in the other two columns
- Find the sum of the third column
- Divide this by n-1
- Take the square root.
- Example: Number 18, page 664
x = (16+17+18+19+20)/5
= 90/5
= 18
x x-x (x-x)2
16 -2 4
17 -1 1
18 0 0
19 1 1
20 2 4
------
sum 10 n = 5, n-1 = 4
s2 = 10/4
= 2.5
s = 1.58
- Example: Number 24, page 664
x = (6+6+6+6+7+7+7+4+8+3)/10
= 60/10
= 6
x x-x (x-x)2
6 0 0
6 0 0
6 0 0
6 0 0
7 1 1
7 1 1
7 1 1
4 -2 4
3 -3 9
8 2 4
----
sum = 20
sum/(n-1) = 20/9 = 2.22
s = 1.49
- Example: (I made this one up)
Find s for the following data set
100 101 102 103 104
x = (100+101+102+103+104)/5
= 510/5
= 102
x x-x (x-x)2
100 -2 4
101 -1 1
102 0 0
103 1 1
104 2 4
---------
sum 10 n = 5, n-1 = 4
s2 = 10/4
= 2.5
s = 1.58