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Abstract 

Undergraduate MS business students developed and 
debugged a spreadsheet modelfrom a wordproblem. 
This model consisted ofa bid to build a wall. The 
problem was designed to be relatively simple and 
domain-free, to address the concern that past spreadsheet 
experiments mqv have usedproblems that were too 
dtflcult or that required domain knowledge that subjects 
did not have. 

During the development phase, 72 subjects created 
the spreadsheet model. Even with this rather simple 
problem, 38% of the models contained an error. - 

This high number of incorrect spreadsheets lwas not 
due to subjects making many errors. They only made 0.4 
errors per spreadsheet. In addition, their cell error rate 
(CER) was only I. 7%, meaning that only 1.7% of their 
cells contained errors. Unfortunately, sprea&h#eets tend 
to have long cascades of ceils leading to the bonom line. 
This means that even tiny cell error rates will multiply 
into high rates of bottom-line errors. 

In a debugging phase, subjects tried to debug their 
own models. Of 19 subjects with incorrect models who 
did the debugging part of the experiment, only three 
(Ida%) found and corrected their errors. So even with a 
relatively simple model, development and debugging were 
problematic. This is a lower rate offinding errors than 
Galletta, et al. [I 993, I9961 found when subject,s 
debugged models created by the experimenter. This may 
mean that people are not as good at debugging their own 
models as they are at debugging models created by 
others. 

Introduction 

Spreadsheeting is enormously important in business. 
It is difficult to imagine a corporation making a key 
decision without “going through the numbers.” 
Spreadsheeting has been the second most widely used PC 
application overall and has been first among managers 
[Panko & Halverson, 19951. 

Unfortunately, there is considerable and growing 
evidence that errors are relatively common in 

spreadsheeting. In another article in this minitrack, 
Halverson and the author [Panko & Halverson, 19961 
survey past experiments and field studies that have looked 
at errors. Perhaps the most significant fact in these 
studies is that every last study that has looked for errors 
has found them and has found them in disturbingly high 
numbers. 

The Need for a Slimpler Problem with Little Domain 
Knowledge 

This paper describes a new experiment using 
undergraduate students. One purpose was to see if the 
high error rates found in earlier experiments might be 
artifacts of problem difficulty and inadequate domain 
knowledge. For instance, the high error rates that 
Halverson and the author [Panko & Halverson, 19951 
found for Cassandra errors was almost certainly due in 
part to lack of accounting knowledge. To probe this 
matter further, we developed a new problem for this 
study. This new problem requires very little domain 
knowledge. 

The Need to Understand the Debugging of One’s Own 
Spreadsheet Models 

A second purpose of the experiment was to increase 
our understanding of debugging errors. In programming, 
experiments have shown that people will only catch about 
half of all errors in a program during code inspection 
[Myers, 1976; Selby, 1985; Tjahjono, 19951. Recently, 
Galietta and his colleagues at Pittsburgh [1993, 19961 
have conducted two experiments in spreadsheet 
debugging that had similar error rates. This is obviously 
an area meriting further study. 

We are especially interested in how well people do 
when they attempt to debug their own spreadsheet 
models. 

First, we suspect that errors will be worse when 
people debug their own spreadsheet models than when 
they debug models developed by others. The same mind 
set that caused them to make an error might cause them 
not to see the error later. In general, people seem to have 
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a more difficult t ime proofreading their own typing than 
proofreading the typing of others. 

Second, the spreadsheets given to subjects to debug 
have been well-designed, making them easy to read. In 
contrast, the spreadsheet models produced by students 
and other novices often have poor design. For instance, 
instead of having separate cells for units sold, unit price, 
and sales revenues, subjects often jam this information 
into a single cell. This makes reading the model quite 
difficult. If spreadsheets are poorly designed, this might 
harm a subject’s ability to detect errors. 

In general, then, we expect spreadsheet debugging 
errors to be higher than Galletta et al. [ 1993, 19961 found. 

Cell Error Rates 

Most early studies on spreadsheet errors merely 
reported the percentage of spreadsheet models containing 
any error. This is a rather blunt measurement. It does not 
tell us how many errors the models contained. Nor does 
it allow us to take into account the size of the sprea.dsheet 
model. Presumably, the likelihood of error will be larger 
in large spreadsheet models than in smaller ones. 

In an earlier paper, the author and Richard Halverson 
[ 19951 suggested that instead of just measuring what 
fraction of all spreadsheets have errors, we should look at 
the cell error rate (CER)---the percentage of cells in the 
spreadsheet that have errors. 

This suggestion was based on experiences in 
programming with third-generation languages. Statement 
error rates in third-generation languages are 3% to 7%. 
This range is well-established from numerous real-world 
code inspections [Panko & Halverson, 1994. If you 
multiply the statement error rate in programming by the 
length of the program, you can get a rough estimate of 
how many errors to expect in the program. 

We hoped that, by measuring CERs, we could allow 
professional spreadsheet developers to anticipate the 
number of errors in their spreadsheets. 

We computed CERs for our first study [Panko & 
Halverson, 19951. For general business students working 
alone, the mean CER was 5.5%. The CER was also high 
for accounting and finance students working alone (3.1%) 
and for general business students working in teams of 
four (2.0%). 

We also computed the CER for the Hassinen [ 1988, 
19951 experiment using novice student programmers and 
found it to be 4.3% for formula cells. 

In a pair of studies using upper-division business 
students and graduate students in an Accounting 
Information Systems class, Janvrin and Morrison [ 19961 
had much higher cell error rates of 6.6% to 16.8%, 
depending on the study and the treatment. However these 
tigures were for formula cells that were links to other 

worksheets. These presumably have higher error rates 
than other formula cells. 

In a final experiment measuring CERs, Lerch [198X] 
had 2 1 experienced Lotus l-2-3 users from industry build 
six spreadsheet modules apiece. The overall CER for 
formulas in this experiment was 11.3%. However the 
formulas were quite rich in references to cells in other 
rows, columns or both, and quite a few references were 
complex. 

The studies mentioned to now were ail experiments. 
But we do have data from one field audit. Hicks [ 19951 
used our taxonomy of error types [Panko & Halverson, 
19961 to measure the CER for a large module (3,856 
cells) of a real-world spreadsheet program in its final 
auditing phase. His CER was 1.2%. Unlike experiments, 
this audit did not have independent check figures, so there 
could have been undetected errors. However the audit 
was done by a three-person team, and for each formula, 
the team looked at the algorithm before analyzing the 
formula in detail. It seems likely that most errors were 
detected. 

So although our sample of studies is still small, CERs 
to date have fallen into a fairly narrow range for 
experiments using students, for experiments using 
professionals, and for one real-world audit. 

These CERs, furthermore, are about as large as 
statement error rates in third-generation programming 
languages [Panko & Halverson, 19951. 

These high CERs are disturbing. Suppose you are 
computing a bottom-line value. And suppose that you 
have N cells in the cascade of cells leading to that bottom- 
line value. Then the probability (P) of an error in the 
bottom-line cell will be the following [Lorge & Solomon, 
19553: 

P = l- (I-CER)N 

It is easy to see that if you have a CER of even 1% in 
a cascade of only ten or twenty cells, then the probability 
that a spreadsheet model will have an error will be very 
close to 100%. Real-world spreadsheets may have even 
longer cascades. They also may have many cascades. 
You multiply the error probabilities of multiple cascades 
using a similar formula. 

If CERs really do fall into the range of about 1% to 
5%, in fact, the real issue is not whether some large 
spreadsheets have errors but rather how many errors they 
have on the average. If you have a model with 1000 
cells, for instance, you would expect to have between 10 
and 50 errors that are undetected by the developer. So it 
is important to understand whether the substantial CERs 
seen in earlier studies may have been due to problems 
simply being too complex for subjects to master. 
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Methodology 

The Sample 

The sample consisted of 72 upper-division 
undergraduate business students. All were MIS majors. 
All completed the work as a part of their class 
requirements. Subjects were allowed to do an alternative 
assignment instead of participating in the experiment. 
None elected to do so. 

In the post-experiment questionnaire (discussed 
below), subjects rated their spreadsheet expertise. The 
mean on a seven-point scale was 4.9. There was no 
difference between subjects who made errors and those 
who did not. Sixty-five percent used the three highest 
values on the scale. Another 24 percent selecteNd four. 

Another question asked about the adequacy of their 
spreadsheet knowledge for the experimental task. Eight- 
five percent rated their spreadsheet knowledge as 
adequate. The rest said that their knowledge was barely 
adequate. None rated their knowledge as inadequate. 
This distribution seems reasonable, because the task only 
required basic spreadsheet skills. 

Procedure 

The subjects did not work in the laboratory. Instead, 
we allowed them to take the experiment home in a sealed 
envelope. They were to open the envelope while sitting 
in front of a blank spreadsheet file. Then they were to 
open the packet and do the work. They had 45 minutes to 
do the task. 

Not using the control of laboratory work is 
controversial. However there was little incentive to cheat, 
because subjects knew that they would get full c.redit if 
they merely gave the task their best effort. In acldition, 
we feel that not doing the task in a laboratory ad.ded to 
realism. 

As a cross check, in another study we had 10 subjects 
do the development task in the laboratory. Thirty percent 
had errors, in contrast to 38% of the subjects who did the 
assignment on a take-home basis. in addition, we 
checked each of the 72 spreadsheets in this study to 
ensure that they were not merely copies of someone else’s 
work. 

The packet contained a consent form and a set of 
instructions. Both were explained in class before handing 
out the packet. The packet also contained a brief problem 
statement, which we present below. 

Finally, the packet also contained a post-expleriment 
questionnaire. This questionnaire asked about the 
subjects’ perceptions of the problem, the experiment 
experience, their performance, and their background. 

The Problem 

As discussed lin the introduction, we sought to develop 
a relatively simplle problem that would be relatively 
domain free. By “domain free,” we mean that it does not 
depend on specialized knowledge, such as accounting 
principles, beyond what the average person would be 
expected to know. We selected the following problem, 
which requires only elementary knowledge about profit 
margins, the computation of volume, the computation of 
hours worked, the computation of wages from hours 
worked and hourly wage, and fringe benefits. 

You are to build a spreadsheet model to help 
you create a bid to build a wall. You will offer 
two options--lava rock or brick. 

Both walls will be built by crews of two. 
Crews will work three eight-hour days to build 
either type of wall. 

The wall will be 20 feet long, 6 feet tall, and 2 
feet thick. 

Wages will be $10 per hour per person. You 
will have to #add 20% to wages to cover fringe 
benefits. 

Lava rock will cost $3 per cubic foot. Brick 
will cost $2 per cubic foot. 

Your bid must add a profit margin of 30% to 
your expected cost. 

In the post-experiment questionnaire, we asked 
respondents to rate the problem’s difficulty on a five- 
point scale, with Give being high. Sixty-three percent of 
the respondents choose 1 or 2, and another 3 1% chose 3. 
Only 6% chose values at the high end of the scale. 
Subjects without errors had a mean of 2.25. Those with 
errors had a mean of 2.13. The difference was not 
statistically significant. We seemed to have succeeded in 
producing a relatively simple problem from the subject’s 
point of view. 

In the posttest, we also asked the subjects if they had 
sufficient time. Om a 7-point scale, only 9% said that they 
did not have sufficient time. Subjects without errors had a 
mean of 6.18; thos#e with errors had a mean of 6.08. The 
difference was not statistically significant. 

We also asked the subjects, on a seven-point scale, 
whether they felt mnse and uncomfortable. Only seven 
percent agreed. There was again no statistically 
significant difference between subjects who committed 
errors and those who did not. 
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Figure 1: Model Solution for the Wall Problem 

Labor Hours 
Days per person 
Hours per day 
Hours per person 
People 
Hours 

3 
8 

24 
2 

48 

Labor Cost 
Pay per hour 
Pay 
Fringe benefit rate 
Fringe benefits 
Labor cost 

$10 
$480 
20% 
$96 

$576 

Wall Volume 
Height 
Length 
Thickness 
Volume 

6 
20 

2 
240 

Materials Cost Brick Lava 
Cost per cubic foot $2 $3 
Materials cost $480 $720 

Total Cost and Bid Brick Lava 
Labor plus materials $1,056 $1,296 
Profit margin 30% 
Markup $317 $389 
Bid $1,373 $1,685 

Error Determination 

To count errors, we used a model spreadsheet 
solution. Figure 1 shows this solution. It follows the 
author’s [Panko, 19881 prescriptions for spreadsheet 
modeling. 

We compared the subjects’ models with the model 
solution. If there was no error, we recorded the fact. If 
the bottom line was incorrect, we identified the errors and 
changed them until the model was correct. 

Results 

Spreadsheets with Errors 

The simplest measure of errors is the fraction of all 
spreadsheet models that contained errors. In this study, of 
the 72 spreadsheets developed by the subjects, 27 had 
errors. This was an error rate of 38%. Although this was 
lower than the error rates found in past experiments, it 
was still quite high. 

Numbers of Errors 

As in the case of our earlier study with Halverson 
[Panko & Halverson, 19951, although the fraction of 
spreadsheets with errors was high, the subjects actually 
made very few errors. They only made only a total of 30 
errors in all of their 72 models--only 0.4 errors per 
model. Even among models with errors, there were only 
1.1 errors per model. Only two of the 27 models with 
errors had two errors. None had more. 

As the Halverson and the author [Panko & Halverson, 
19951 discussed, the problem with spreadsheets is not that 
people make a large number of errors. It is that there are 
many cells on the logic cascades leading to the bottom 
line figures. As discussed earlier, even a tiny cell error 
rate will be multiplied over a logic cascade into a high 
probability of an error in bottom line values. 

Cell Error Rate 

As discussed earlier, we are especially interested in 
the cell error rate or CER- the number of errors per 
hundred mode1 cells. 

In the current study, we based the number of cells on 
our model solution in Figure 1. In general, our subjects 
committed many violations of the author’s [Panko, 19881 
design prescriptions, and as a result their models 
generally contained fewer cells than our model solution. 
We argue that the model solution in Figure 1 is more 
representative of the size of the problem. Computing the 
CER on actual cells in the subject solutions would have 
produced an even higher CER. 

The mode1 solution had 25 cells, so the 72 
spreadsheets would have had a total of 1,800 cells. The 
subjects made 30 errors, so the cell error rate was 1.7%. 

As expected, this cell error rate was lower than those 
in the past experiments mentioned above. This suggests 
that our problem was indeed simpler than past problems. 

However even this lower CER would still be fatal in 
the real world. In large models, having 1% to 2% of all 
cells in error would mean not just a high probability of an 
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error in the bottom line but also a high number of errors 
per model. 

Number of Distinct Errors 

In the author’s past experiment with Richard 
Halverson [Panko & Halverson, 19951, we noted that 
subjects made many distinct errors. This was only 
slightly less true in the current study. 

In the current study, one error did stand out. Of the 
thirty errors, eleven consisted of overlooking the fact that 
there were two people on each work crew. 

Nevertheless, the errors were still highly distributed. 
Only five other errors occurred twice. Nine of the errors 
occurred only once. So although one error was indeed 
rather common, there was still a wide distribution of 
distinct errors. 

This suggests that error-making tends to be a rather 
random occurrence and may occur any place. In model 
development, you cannot just take special care with the 
trickiest parts of the model. 

The single error that did occur frequently, 
furthermore, suggests a line of research. The error was 
made in a long item description in the problem statement 
presented earlier. This may have produced cognitive 
overload. Future experiments might vary sentence 
wording to see if this is, in fact, the case. 

Types of Errors 

Richard Halverson and the author [Panko & 
Halverson, 19951 argued that it is important to distinguish 
between different types of errors. First, there are 
mechanical errors, such as pointing to the wrong cell or 
typing a number incorrectly. Second, there are logic 
errors, in which the developer uses the wrong algorithm 
or expresses it incorrectly. 

We argued, from past research, that logic errors 
should be more common, because they are quite clifflcult 
to catch. In fact, they were several t imes more common 
than mechanical errors. Mechanical errors occurred in 
1.8% of the cells for general business students working 
alone [Panko & Halverson, 19951. In turn, logic errors 
(ignoring one unusual “Cassandra” error) occurred in 
4.1% of the formula cells [Panko & Halverson, 19951. 

Based on subsequent reflection, and based on work by 
Allwood [ 19841 on statistics errors, we now believe that it 
is important to use a third category of errors, namely 
omissions [Panko & Halverson, 19961. In omission 
errors, the subject does not include something in the 
model that should be there. Allwood [ 19841 found that 
omission errors are resistant to detection. So although his 
subjects did not make omission errors frequently while 
developing their problem solutions, these errors tended to 
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elude detection and represented a disproportionate share 
of foal errors. 

In this study, 17 of the 30 errors (57%) were omission 
errors. Eleven were the omission described above- 
ignoring the fact that there were two people in each crew. 
So omission errors are indeed important. 

The remaining 13 errors were logic errors. It is 
interesting that of the distinct errors committed by only a 
single person, all nine were logic errors. So logic errors 
were relatively common and diverse. 

We did not count any mechanical errors. This means 
that in the 864 numerical cells, there was not a single 
uncorrected error. Among the 936 formula cells, there 
were no counted mechanical errors, but some of the logic 
errors may have been mechanical errors. In any case, the 
rate of mechanical errors was either zero or extremely 
low. 

For omission errors, which can occur in either formula 
or numerical cells, the cell error rate was 0.9%. For logic 
errors, which are computed on the basis offormula cells, 
the CER was 1.4%. These rates are lower than those of 
the experiments described earlier. This was expected, 
given the simpler nature of the model. However the cell 
error rates in this study were not enough lower than those 
in past studies to m,ake spreadsheeting safe. While 
reducing difficulty ,and domain knowledge reduced error 
rates, it did so only moderately. 

Debugging 

Galletta and his colleagues [Galletta, et al., 1993, 
19961 conducted hvo studies in which subjects debugged 
spreadsheets that were seeded with errors. The subjects 
in the first study were 30 CPAs and 30 MBA students. 
The subjects in the second study were 113 MBA students. 

In these two experiments, the subjects missed about 
half of the errors. lm addition, no subject found all of the 
errors in either stud:y. As noted earlier, this is comparable 
to the detection rates in experiments on detecting errors in 
the debugging of third-generation programming 
languages. 

In our study, most subjects were given their models 
back with instructions to debug them. We did not tell 
them whether there was an error in their specific models. 
To assist them, we gave subjects 20 minutes of 
instructions on how to debug spreadsheets. 

None of the subjects with correct spreadsheets made 
any changes. Of the 27 subjects with incorrect 
spreadsheets, 19 attempted to correct their spreadsheets. 
(Six others were in a class that was not given the 
opportunity to reexamine their models. Two others were 
absent for the debug,ging instruction and so could not be 
included without harming comparability.) 

360 

Proceedings of the 1996 Hawaii International Conference on System Sciences (HICSS-29) 
1060-3425/96 $10.00 © 1996 IEEE 



Proceedings of the 29th Annual Hawaii International Conference on System Sciences - 1996 

At a Glance 

Development Phase 

Number of subjects 
Spreadsheets with errors, number 
Spreadsheets with errors, percent 
Errors per spreadsheet 
Total errors 
Omission errors 
Logic errors 
Mechanical errors 
CER (ceil error rate) overall 
CER for omission errors 
CER for logic errors (computed for logic 
cells only) 

72 
27 

38% 
0.4 
30 
17 
13 
0 

1.7% 
0.9% 
1.4% 

Debugging Phase 

Debugged spreadsheets with errors 19 
Correctly fixed, number 3 
Correctly fixes, percentage 16% 

As discussed above, we expected our subjects to do 
poorly because they were debugging their own models 
and because their models tended to be difficult to read. 
Indeed, only three of the 19 subjects with errors (Ji 6%) 
corrected their spreadsheets. Another 12 made no 
changes. The remaining 5 made some changes but still 
did not get the correct answer. One corrected a single 
error in a spreadsheet with two errors. Another began 
with two errors and ended with three. 

Overall, our results add to the evidence that detecting 
spreadsheet errors is very difficult. Our results also 
suggest that when people correct their own spreadsheets, 
they may do even worse than when they correct well- 
formed models seeded with errors by the experimenter. 

Who Makes Errors? 

Can we distinguish between people who make errors 
and people who do not? In general, the questions that we 
asked on the post-experiment questionnaire provided little 
power to distinguish people who built correct 
spreadsheets from those who did not. 

We asked 36 questions that might have distinguished 
between the two groups of subjects. Only three showed 
statistically significant differences between the two 
groups. Among those that did not were confidence in the 

accuracy to the spreadsheet and various measures of prior 
knowledge. 

Taking a .05 cutoff, which is generous with so many 
inferences, two of the three distinguishing questions 
involved perceptions of the best group size. When asked 
for the best number of people to have done the model 
development, subjects with errors had a mean of 1.7 
people, while for subjects without errors, the mean was 
1.3. Similarly, subjects with errors were slightly more 
likely to disagree with the statement that one person was 
the right number for the development project. This 
suggests that the subjects who made errors were 
somewhat lacking in confidence after the experiment. 

The third variable reinforces this interpretation. 
Subjects with errors were slightly more likely to say that 
they had a general direction but had problems with the 
specifics. 

All three of these differences, while statistically 
significant, involved very small differences on the 
independent variables. So giving people questionnaires to 
assess whether or not they will make errors does not look 
like a promising approach. 

These results seem to suggest that error-making has a 
strong random element. The same people who made 
errors in this experiment might be the people with correct 
spreadsheets in another experiment. 

Conclusion 

We used a problem designed to be simpler and more 
domain-free than the problems used in past spreadsheet 
development experiments. Yet our subjects still made 
errors in 38% of their models. Although their cell error 
rate (CER) was very low-only 1.7 errors in every 
hundred cells-cascades of cells leading to bottom line 
cells multiplied these low cell error rates into a large 
number of bottom line errors. 

So even with a relatively simple and domain-free 
problem, the CER was over 1%. Even higher CERs have 
been seen in past experiments. The one field audit that 
reported CER found a 1.2% CER. 

Given such CERs, the issue probably is not how many 
spreadsheets have errors but how many errors there are 
likely to be in each large spreadsheet. Hicks’ well- 
developed spreadsheet with 3,856 cells, for instance, 
contained 45 errors. 

Programmers have long known that they have similar 
error rates per statement when a programmer has 
“finished” a program or module [Panko & Halverson, 
19951. As a result, programmers use development 
disciplines that call for spending about a third of their 
t ime testing the program against test data and conducting 
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cell-by-cell inspections with teams of programmers. If 
they do this, they know, they can get error rates down to 
about 2 incorrect lines of code in each thousand [Panko & 
Halverson, 19951. 

Unfortunately, surveys of spreadsheet developers have 
shown that independent audits are rare and that data 
testing with extreme values is also uncommon [Panko & 
Halverson, 19961. In addition, data on spreadsheet (and 
programming) debugging indicates that only team 
inspections are likely to succeed. In general, it seems that 
we will need the kinds of deep debugging seen in 
professional programming for important spreadsheets. 
This will involve sophisticated data testing and team code 
inspections. 

In fact, we will have to rethink the entire development 
process. Professional programmers have to conduct team 
design inspections before they ever begin to code. In 
contrast, surveys show that most spreadsheeters spend 
very little time planning before they start filling in cells 
on a spreadsheet. 

Perhaps spreadsheeters have felt that their models are 
small compared to the programs of professional 
programmers, but we know that many spreadshei!ts are 
quite large [Panko & Halverson, 19961. We also know 
that spreadsheeters often have considerable difficulty 
when they try to understand even their own spreadsheets 
and often have problems finding appropriate ways of 
handling computational tasks [Hendry & Green, 19941. 
Quite simply, spreadsheeting is quite a bit like 
programming. 

Fortunately, if our goal is to teach spreadshee:ters how 
to develop spreadsheets professionally, we may be able to 
draw on what we already know about program 
development. Although not everything in program 
development will carry over to spreadsheet development, 
in a real sense, teaching spreadsheeters how to develop 
their spreadsheets better will be “teaching new dogs old 
tricks.” 
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