
Proceedings of the 29th Annual Hawaii International Conference on System Sciences - I996

Hitting the Wall:
Errors in Developing and Debugging a “Simple” Spreadsheet Model

Raymond R. Panko
University of Hawaii
panko@hawaii.edu

Abstract

Undergraduate MS business students developed and
debugged a spreadsheet modelfrom a wordproblem.
This model consisted ofa bid to build a wall. The
problem was designed to be relatively simple and
domain-free, to address the concern that past spreadsheet
experiments mqv have usedproblems that were too
dtflcult or that required domain knowledge that subjects
did not have.

During the development phase, 72 subjects created
the spreadsheet model. Even with this rather simple
problem, 38% of the models contained an error. -

This high number of incorrect spreadsheets lwas not
due to subjects making many errors. They only made 0.4
errors per spreadsheet. In addition, their cell error rate
(CER) was only I. 7%, meaning that only 1.7% of their
cells contained errors. Unfortunately, sprea&h#eets tend
to have long cascades of ceils leading to the bonom line.
This means that even tiny cell error rates will multiply
into high rates of bottom-line errors.

In a debugging phase, subjects tried to debug their
own models. Of 19 subjects with incorrect models who
did the debugging part of the experiment, only three
(Ida%) found and corrected their errors. So even with a
relatively simple model, development and debugging were
problematic. This is a lower rate offinding errors than
Galletta, et al. [I 993, I9961 found when subject,s
debugged models created by the experimenter. This may
mean that people are not as good at debugging their own
models as they are at debugging models created by
others.

Introduction

Spreadsheeting is enormously important in business.
It is difficult to imagine a corporation making a key
decision without “going through the numbers.”
Spreadsheeting has been the second most widely used PC
application overall and has been first among managers
[Panko & Halverson, 19951.

Unfortunately, there is considerable and growing
evidence that errors are relatively common in

spreadsheeting. In another article in this minitrack,
Halverson and the author [Panko & Halverson, 19961
survey past experiments and field studies that have looked
at errors. Perhaps the most significant fact in these
studies is that every last study that has looked for errors
has found them and has found them in disturbingly high
numbers.

The Need for a Slimpler Problem with Little Domain
Knowledge

This paper describes a new experiment using
undergraduate students. One purpose was to see if the
high error rates found in earlier experiments might be
artifacts of problem difficulty and inadequate domain
knowledge. For instance, the high error rates that
Halverson and the author [Panko & Halverson, 19951
found for Cassandra errors was almost certainly due in
part to lack of accounting knowledge. To probe this
matter further, we developed a new problem for this
study. This new problem requires very little domain
knowledge.

The Need to Understand the Debugging of One’s Own
Spreadsheet Models

A second purpose of the experiment was to increase
our understanding of debugging errors. In programming,
experiments have shown that people will only catch about
half of all errors in a program during code inspection
[Myers, 1976; Selby, 1985; Tjahjono, 19951. Recently,
Galietta and his colleagues at Pittsburgh [1993, 19961
have conducted two experiments in spreadsheet
debugging that had similar error rates. This is obviously
an area meriting further study.

We are especially interested in how well people do
when they attempt to debug their own spreadsheet
models.

First, we suspect that errors will be worse when
people debug their own spreadsheet models than when
they debug models developed by others. The same mind
set that caused them to make an error might cause them
not to see the error later. In general, people seem to have

356
1060-3425196 $5.00 0 1996 IEEE

Proceedings of the 1996 Hawaii International Conference on System Sciences (HICSS-29)
1060-3425/96 $10.00 © 1996 IEEE

Proceedings of the 29th Annual Hawaii International Conference on System Sciences - 1996

a more difficult t ime proofreading their own typing than
proofreading the typing of others.

Second, the spreadsheets given to subjects to debug
have been well-designed, making them easy to read. In
contrast, the spreadsheet models produced by students
and other novices often have poor design. For instance,
instead of having separate cells for units sold, unit price,
and sales revenues, subjects often jam this information
into a single cell. This makes reading the model quite
difficult. If spreadsheets are poorly designed, this might
harm a subject’s ability to detect errors.

In general, then, we expect spreadsheet debugging
errors to be higher than Galletta et al. [1993, 19961 found.

Cell Error Rates

Most early studies on spreadsheet errors merely
reported the percentage of spreadsheet models containing
any error. This is a rather blunt measurement. It does not
tell us how many errors the models contained. Nor does
it allow us to take into account the size of the sprea.dsheet
model. Presumably, the likelihood of error will be larger
in large spreadsheet models than in smaller ones.

In an earlier paper, the author and Richard Halverson
[19951 suggested that instead of just measuring what
fraction of all spreadsheets have errors, we should look at
the cell error rate (CER)---the percentage of cells in the
spreadsheet that have errors.

This suggestion was based on experiences in
programming with third-generation languages. Statement
error rates in third-generation languages are 3% to 7%.
This range is well-established from numerous real-world
code inspections [Panko & Halverson, 1994. If you
multiply the statement error rate in programming by the
length of the program, you can get a rough estimate of
how many errors to expect in the program.

We hoped that, by measuring CERs, we could allow
professional spreadsheet developers to anticipate the
number of errors in their spreadsheets.

We computed CERs for our first study [Panko &
Halverson, 19951. For general business students working
alone, the mean CER was 5.5%. The CER was also high
for accounting and finance students working alone (3.1%)
and for general business students working in teams of
four (2.0%).

We also computed the CER for the Hassinen [1988,
19951 experiment using novice student programmers and
found it to be 4.3% for formula cells.

In a pair of studies using upper-division business
students and graduate students in an Accounting
Information Systems class, Janvrin and Morrison [19961
had much higher cell error rates of 6.6% to 16.8%,
depending on the study and the treatment. However these
tigures were for formula cells that were links to other

worksheets. These presumably have higher error rates
than other formula cells.

In a final experiment measuring CERs, Lerch [198X]
had 2 1 experienced Lotus l-2-3 users from industry build
six spreadsheet modules apiece. The overall CER for
formulas in this experiment was 11.3%. However the
formulas were quite rich in references to cells in other
rows, columns or both, and quite a few references were
complex.

The studies mentioned to now were ail experiments.
But we do have data from one field audit. Hicks [19951
used our taxonomy of error types [Panko & Halverson,
19961 to measure the CER for a large module (3,856
cells) of a real-world spreadsheet program in its final
auditing phase. His CER was 1.2%. Unlike experiments,
this audit did not have independent check figures, so there
could have been undetected errors. However the audit
was done by a three-person team, and for each formula,
the team looked at the algorithm before analyzing the
formula in detail. It seems likely that most errors were
detected.

So although our sample of studies is still small, CERs
to date have fallen into a fairly narrow range for
experiments using students, for experiments using
professionals, and for one real-world audit.

These CERs, furthermore, are about as large as
statement error rates in third-generation programming
languages [Panko & Halverson, 19951.

These high CERs are disturbing. Suppose you are
computing a bottom-line value. And suppose that you
have N cells in the cascade of cells leading to that bottom-
line value. Then the probability (P) of an error in the
bottom-line cell will be the following [Lorge & Solomon,
19553:

P = l- (I-CER)N

It is easy to see that if you have a CER of even 1% in
a cascade of only ten or twenty cells, then the probability
that a spreadsheet model will have an error will be very
close to 100%. Real-world spreadsheets may have even
longer cascades. They also may have many cascades.
You multiply the error probabilities of multiple cascades
using a similar formula.

If CERs really do fall into the range of about 1% to
5%, in fact, the real issue is not whether some large
spreadsheets have errors but rather how many errors they
have on the average. If you have a model with 1000
cells, for instance, you would expect to have between 10
and 50 errors that are undetected by the developer. So it
is important to understand whether the substantial CERs
seen in earlier studies may have been due to problems
simply being too complex for subjects to master.

357

Proceedings of the 1996 Hawaii International Conference on System Sciences (HICSS-29)
1060-3425/96 $10.00 © 1996 IEEE

Proceedings of the 29th Annual Hawaii International Conference on System Sciences - 1996

Methodology

The Sample

The sample consisted of 72 upper-division
undergraduate business students. All were MIS majors.
All completed the work as a part of their class
requirements. Subjects were allowed to do an alternative
assignment instead of participating in the experiment.
None elected to do so.

In the post-experiment questionnaire (discussed
below), subjects rated their spreadsheet expertise. The
mean on a seven-point scale was 4.9. There was no
difference between subjects who made errors and those
who did not. Sixty-five percent used the three highest
values on the scale. Another 24 percent selecteNd four.

Another question asked about the adequacy of their
spreadsheet knowledge for the experimental task. Eight-
five percent rated their spreadsheet knowledge as
adequate. The rest said that their knowledge was barely
adequate. None rated their knowledge as inadequate.
This distribution seems reasonable, because the task only
required basic spreadsheet skills.

Procedure

The subjects did not work in the laboratory. Instead,
we allowed them to take the experiment home in a sealed
envelope. They were to open the envelope while sitting
in front of a blank spreadsheet file. Then they were to
open the packet and do the work. They had 45 minutes to
do the task.

Not using the control of laboratory work is
controversial. However there was little incentive to cheat,
because subjects knew that they would get full c.redit if
they merely gave the task their best effort. In acldition,
we feel that not doing the task in a laboratory ad.ded to
realism.

As a cross check, in another study we had 10 subjects
do the development task in the laboratory. Thirty percent
had errors, in contrast to 38% of the subjects who did the
assignment on a take-home basis. in addition, we
checked each of the 72 spreadsheets in this study to
ensure that they were not merely copies of someone else’s
work.

The packet contained a consent form and a set of
instructions. Both were explained in class before handing
out the packet. The packet also contained a brief problem
statement, which we present below.

Finally, the packet also contained a post-expleriment
questionnaire. This questionnaire asked about the
subjects’ perceptions of the problem, the experiment
experience, their performance, and their background.

The Problem

As discussed lin the introduction, we sought to develop
a relatively simplle problem that would be relatively
domain free. By “domain free,” we mean that it does not
depend on specialized knowledge, such as accounting
principles, beyond what the average person would be
expected to know. We selected the following problem,
which requires only elementary knowledge about profit
margins, the computation of volume, the computation of
hours worked, the computation of wages from hours
worked and hourly wage, and fringe benefits.

You are to build a spreadsheet model to help
you create a bid to build a wall. You will offer
two options--lava rock or brick.

Both walls will be built by crews of two.
Crews will work three eight-hour days to build
either type of wall.

The wall will be 20 feet long, 6 feet tall, and 2
feet thick.

Wages will be $10 per hour per person. You
will have to #add 20% to wages to cover fringe
benefits.

Lava rock will cost $3 per cubic foot. Brick
will cost $2 per cubic foot.

Your bid must add a profit margin of 30% to
your expected cost.

In the post-experiment questionnaire, we asked
respondents to rate the problem’s difficulty on a five-
point scale, with Give being high. Sixty-three percent of
the respondents choose 1 or 2, and another 3 1% chose 3.
Only 6% chose values at the high end of the scale.
Subjects without errors had a mean of 2.25. Those with
errors had a mean of 2.13. The difference was not
statistically significant. We seemed to have succeeded in
producing a relatively simple problem from the subject’s
point of view.

In the posttest, we also asked the subjects if they had
sufficient time. Om a 7-point scale, only 9% said that they
did not have sufficient time. Subjects without errors had a
mean of 6.18; thos#e with errors had a mean of 6.08. The
difference was not statistically significant.

We also asked the subjects, on a seven-point scale,
whether they felt mnse and uncomfortable. Only seven
percent agreed. There was again no statistically
significant difference between subjects who committed
errors and those who did not.

358

Proceedings of the 1996 Hawaii International Conference on System Sciences (HICSS-29)
1060-3425/96 $10.00 © 1996 IEEE

Proceedings of the 29th Annual Hawaii International Conference on System Sciences - 1996

Figure 1: Model Solution for the Wall Problem

Labor Hours
Days per person
Hours per day
Hours per person
People
Hours

3
8

24
2

48

Labor Cost
Pay per hour
Pay
Fringe benefit rate
Fringe benefits
Labor cost

$10
$480
20%
$96

$576

Wall Volume
Height
Length
Thickness
Volume

6
20

2
240

Materials Cost Brick Lava
Cost per cubic foot $2 $3
Materials cost $480 $720

Total Cost and Bid Brick Lava
Labor plus materials $1,056 $1,296
Profit margin 30%
Markup $317 $389
Bid $1,373 $1,685

Error Determination

To count errors, we used a model spreadsheet
solution. Figure 1 shows this solution. It follows the
author’s [Panko, 19881 prescriptions for spreadsheet
modeling.

We compared the subjects’ models with the model
solution. If there was no error, we recorded the fact. If
the bottom line was incorrect, we identified the errors and
changed them until the model was correct.

Results

Spreadsheets with Errors

The simplest measure of errors is the fraction of all
spreadsheet models that contained errors. In this study, of
the 72 spreadsheets developed by the subjects, 27 had
errors. This was an error rate of 38%. Although this was
lower than the error rates found in past experiments, it
was still quite high.

Numbers of Errors

As in the case of our earlier study with Halverson
[Panko & Halverson, 19951, although the fraction of
spreadsheets with errors was high, the subjects actually
made very few errors. They only made only a total of 30
errors in all of their 72 models--only 0.4 errors per
model. Even among models with errors, there were only
1.1 errors per model. Only two of the 27 models with
errors had two errors. None had more.

As the Halverson and the author [Panko & Halverson,
19951 discussed, the problem with spreadsheets is not that
people make a large number of errors. It is that there are
many cells on the logic cascades leading to the bottom
line figures. As discussed earlier, even a tiny cell error
rate will be multiplied over a logic cascade into a high
probability of an error in bottom line values.

Cell Error Rate

As discussed earlier, we are especially interested in
the cell error rate or CER- the number of errors per
hundred mode1 cells.

In the current study, we based the number of cells on
our model solution in Figure 1. In general, our subjects
committed many violations of the author’s [Panko, 19881
design prescriptions, and as a result their models
generally contained fewer cells than our model solution.
We argue that the model solution in Figure 1 is more
representative of the size of the problem. Computing the
CER on actual cells in the subject solutions would have
produced an even higher CER.

The mode1 solution had 25 cells, so the 72
spreadsheets would have had a total of 1,800 cells. The
subjects made 30 errors, so the cell error rate was 1.7%.

As expected, this cell error rate was lower than those
in the past experiments mentioned above. This suggests
that our problem was indeed simpler than past problems.

However even this lower CER would still be fatal in
the real world. In large models, having 1% to 2% of all
cells in error would mean not just a high probability of an

359

Proceedings of the 1996 Hawaii International Conference on System Sciences (HICSS-29)
1060-3425/96 $10.00 © 1996 IEEE

error in the bottom line but also a high number of errors
per model.

Number of Distinct Errors

In the author’s past experiment with Richard
Halverson [Panko & Halverson, 19951, we noted that
subjects made many distinct errors. This was only
slightly less true in the current study.

In the current study, one error did stand out. Of the
thirty errors, eleven consisted of overlooking the fact that
there were two people on each work crew.

Nevertheless, the errors were still highly distributed.
Only five other errors occurred twice. Nine of the errors
occurred only once. So although one error was indeed
rather common, there was still a wide distribution of
distinct errors.

This suggests that error-making tends to be a rather
random occurrence and may occur any place. In model
development, you cannot just take special care with the
trickiest parts of the model.

The single error that did occur frequently,
furthermore, suggests a line of research. The error was
made in a long item description in the problem statement
presented earlier. This may have produced cognitive
overload. Future experiments might vary sentence
wording to see if this is, in fact, the case.

Types of Errors

Richard Halverson and the author [Panko &
Halverson, 19951 argued that it is important to distinguish
between different types of errors. First, there are
mechanical errors, such as pointing to the wrong cell or
typing a number incorrectly. Second, there are logic
errors, in which the developer uses the wrong algorithm
or expresses it incorrectly.

We argued, from past research, that logic errors
should be more common, because they are quite clifflcult
to catch. In fact, they were several t imes more common
than mechanical errors. Mechanical errors occurred in
1.8% of the cells for general business students working
alone [Panko & Halverson, 19951. In turn, logic errors
(ignoring one unusual “Cassandra” error) occurred in
4.1% of the formula cells [Panko & Halverson, 19951.

Based on subsequent reflection, and based on work by
Allwood [19841 on statistics errors, we now believe that it
is important to use a third category of errors, namely
omissions [Panko & Halverson, 19961. In omission
errors, the subject does not include something in the
model that should be there. Allwood [19841 found that
omission errors are resistant to detection. So although his
subjects did not make omission errors frequently while
developing their problem solutions, these errors tended to

Proceedings of the 29th Annual .Hawaii International Conference on System Sciences - 1996

elude detection and represented a disproportionate share
of foal errors.

In this study, 17 of the 30 errors (57%) were omission
errors. Eleven were the omission described above-
ignoring the fact that there were two people in each crew.
So omission errors are indeed important.

The remaining 13 errors were logic errors. It is
interesting that of the distinct errors committed by only a
single person, all nine were logic errors. So logic errors
were relatively common and diverse.

We did not count any mechanical errors. This means
that in the 864 numerical cells, there was not a single
uncorrected error. Among the 936 formula cells, there
were no counted mechanical errors, but some of the logic
errors may have been mechanical errors. In any case, the
rate of mechanical errors was either zero or extremely
low.

For omission errors, which can occur in either formula
or numerical cells, the cell error rate was 0.9%. For logic
errors, which are computed on the basis offormula cells,
the CER was 1.4%. These rates are lower than those of
the experiments described earlier. This was expected,
given the simpler nature of the model. However the cell
error rates in this study were not enough lower than those
in past studies to m,ake spreadsheeting safe. While
reducing difficulty ,and domain knowledge reduced error
rates, it did so only moderately.

Debugging

Galletta and his colleagues [Galletta, et al., 1993,
19961 conducted hvo studies in which subjects debugged
spreadsheets that were seeded with errors. The subjects
in the first study were 30 CPAs and 30 MBA students.
The subjects in the second study were 113 MBA students.

In these two experiments, the subjects missed about
half of the errors. lm addition, no subject found all of the
errors in either stud:y. As noted earlier, this is comparable
to the detection rates in experiments on detecting errors in
the debugging of third-generation programming
languages.

In our study, most subjects were given their models
back with instructions to debug them. We did not tell
them whether there was an error in their specific models.
To assist them, we gave subjects 20 minutes of
instructions on how to debug spreadsheets.

None of the subjects with correct spreadsheets made
any changes. Of the 27 subjects with incorrect
spreadsheets, 19 attempted to correct their spreadsheets.
(Six others were in a class that was not given the
opportunity to reexamine their models. Two others were
absent for the debug,ging instruction and so could not be
included without harming comparability.)

360

Proceedings of the 1996 Hawaii International Conference on System Sciences (HICSS-29)
1060-3425/96 $10.00 © 1996 IEEE

Proceedings of the 29th Annual Hawaii International Conference on System Sciences - 1996

At a Glance

Development Phase

Number of subjects
Spreadsheets with errors, number
Spreadsheets with errors, percent
Errors per spreadsheet
Total errors
Omission errors
Logic errors
Mechanical errors
CER (ceil error rate) overall
CER for omission errors
CER for logic errors (computed for logic
cells only)

72
27

38%
0.4
30
17
13
0

1.7%
0.9%
1.4%

Debugging Phase

Debugged spreadsheets with errors 19
Correctly fixed, number 3
Correctly fixes, percentage 16%

As discussed above, we expected our subjects to do
poorly because they were debugging their own models
and because their models tended to be difficult to read.
Indeed, only three of the 19 subjects with errors (Ji 6%)
corrected their spreadsheets. Another 12 made no
changes. The remaining 5 made some changes but still
did not get the correct answer. One corrected a single
error in a spreadsheet with two errors. Another began
with two errors and ended with three.

Overall, our results add to the evidence that detecting
spreadsheet errors is very difficult. Our results also
suggest that when people correct their own spreadsheets,
they may do even worse than when they correct well-
formed models seeded with errors by the experimenter.

Who Makes Errors?

Can we distinguish between people who make errors
and people who do not? In general, the questions that we
asked on the post-experiment questionnaire provided little
power to distinguish people who built correct
spreadsheets from those who did not.

We asked 36 questions that might have distinguished
between the two groups of subjects. Only three showed
statistically significant differences between the two
groups. Among those that did not were confidence in the

accuracy to the spreadsheet and various measures of prior
knowledge.

Taking a .05 cutoff, which is generous with so many
inferences, two of the three distinguishing questions
involved perceptions of the best group size. When asked
for the best number of people to have done the model
development, subjects with errors had a mean of 1.7
people, while for subjects without errors, the mean was
1.3. Similarly, subjects with errors were slightly more
likely to disagree with the statement that one person was
the right number for the development project. This
suggests that the subjects who made errors were
somewhat lacking in confidence after the experiment.

The third variable reinforces this interpretation.
Subjects with errors were slightly more likely to say that
they had a general direction but had problems with the
specifics.

All three of these differences, while statistically
significant, involved very small differences on the
independent variables. So giving people questionnaires to
assess whether or not they will make errors does not look
like a promising approach.

These results seem to suggest that error-making has a
strong random element. The same people who made
errors in this experiment might be the people with correct
spreadsheets in another experiment.

Conclusion

We used a problem designed to be simpler and more
domain-free than the problems used in past spreadsheet
development experiments. Yet our subjects still made
errors in 38% of their models. Although their cell error
rate (CER) was very low-only 1.7 errors in every
hundred cells-cascades of cells leading to bottom line
cells multiplied these low cell error rates into a large
number of bottom line errors.

So even with a relatively simple and domain-free
problem, the CER was over 1%. Even higher CERs have
been seen in past experiments. The one field audit that
reported CER found a 1.2% CER.

Given such CERs, the issue probably is not how many
spreadsheets have errors but how many errors there are
likely to be in each large spreadsheet. Hicks’ well-
developed spreadsheet with 3,856 cells, for instance,
contained 45 errors.

Programmers have long known that they have similar
error rates per statement when a programmer has
“finished” a program or module [Panko & Halverson,
19951. As a result, programmers use development
disciplines that call for spending about a third of their
t ime testing the program against test data and conducting

361

Proceedings of the 1996 Hawaii International Conference on System Sciences (HICSS-29)
1060-3425/96 $10.00 © 1996 IEEE

Proceedings of the 29th Annual Hawaii International Conference on System Sciences - 1996

cell-by-cell inspections with teams of programmers. If
they do this, they know, they can get error rates down to
about 2 incorrect lines of code in each thousand [Panko &
Halverson, 19951.

Unfortunately, surveys of spreadsheet developers have
shown that independent audits are rare and that data
testing with extreme values is also uncommon [Panko &
Halverson, 19961. In addition, data on spreadsheet (and
programming) debugging indicates that only team
inspections are likely to succeed. In general, it seems that
we will need the kinds of deep debugging seen in
professional programming for important spreadsheets.
This will involve sophisticated data testing and team code
inspections.

In fact, we will have to rethink the entire development
process. Professional programmers have to conduct team
design inspections before they ever begin to code. In
contrast, surveys show that most spreadsheeters spend
very little time planning before they start filling in cells
on a spreadsheet.

Perhaps spreadsheeters have felt that their models are
small compared to the programs of professional
programmers, but we know that many spreadshei!ts are
quite large [Panko & Halverson, 19961. We also know
that spreadsheeters often have considerable difficulty
when they try to understand even their own spreadsheets
and often have problems finding appropriate ways of
handling computational tasks [Hendry & Green, 19941.
Quite simply, spreadsheeting is quite a bit like
programming.

Fortunately, if our goal is to teach spreadshee:ters how
to develop spreadsheets professionally, we may be able to
draw on what we already know about program
development. Although not everything in program
development will carry over to spreadsheet development,
in a real sense, teaching spreadsheeters how to develop
their spreadsheets better will be “teaching new dogs old
tricks.”

References

Allwood, C. M. “Error Detection Processes in Statistical
Problem Solving,” Cognitive Science (8:4) October-
December 1984, pp. 4 13-437.

Hendry, D. G. & Green, T. R. G. “Creating,
Comprehending, and Explaining Spreadsheets: A
Cognitive Interpretation of What Discretionary Users
Think of the Spreadsheet Model,” international
Journal of Human-Computer Studies (40:6) June
1994, pp. 1033-1065.

Galletta, D. F.; Abraham, D.; El Louadi, M.; Lekse, W.;
Pollalis, Y. A.; & Sampler, J. L. “An Empirical Study
of Spreadsheet Error-Finding Performance,”

Accounting Management Information Technology
(3:2) 1993.

Galletta, D. F.; Hartzel, K. S.; Johnson, S.; Jospeh, J.; &
Rustagi, S. “An Experimental Study of Spreadsheet
Presentation and Error Detection.” Proceedings ofthe
Twenty-Ninth Hawaii International Conference on
System Sciences, Maui, Hawaii, January 1996.

Hassinen, K. An Experimental Study of Spreadsheet
Errors Made by Novice Spreadsheet Users,
Department of Computer Science, University of
Joensuu, P. 0. .Box 111, SF-80101 Joensuu, Finland,
1988.

Hassinen, K., University of Joensuu, private
communication1 with the author, January 1995.

Hicks, L., NYNEX: Corporation. Private communication
with the author, June 1995.

Janvrin, D. & Morrison, J., “Factors Influencing Risks
and Outcomes lin End-User Development,”
Proceedings ofthe Twenty-Ninth Hawaii International
Conference on System Sciences, Maui, Hawaii,
January 1996.

Lerch, F. J., Computerized Financial Planning:
Discovering Cagnitive D@cult ies in Model Building,
Ph.D. dissertation, The University of Michigan, 1988.

Lorge, I. & Solomon, H. “Two Models of Group
Behavior in the Solution of Eureka-Type Problems,”
Psychometrika (20:2) June 1955, pp. 139-148.

Myers, G. J., “A Controlled Experiment in Program
Testing and Colde Walkthroughs/lnspections,”
Communications of the ACM, (2 1:9) pp. 760-768.

Panko R. R. End User Computing: Management,
Applications, and Technology, Wiley, New York,
1988.

Panko, R. R. & Ha’lverson, R. H., Jr., Patterns of Errors
in Spreadsheet Development I: Quantitative Errors,
Working Paper., Department of Decision Sciences,
College of Business Administration, University of
Hawaii, 2404 Maile Way, Honolulu, HI 96822, March
1995. Available in Word for Windows format via
anonymous ftp. The URL is ftp:Nsplicer2.cba.hawaii.
edu/panko/sserrors/sswpmar.doc

Panko, R. R. & Hallverson, R. H., Jr. “Spreadsheets on
Trial: A Framework for Research on Spreadsheet
Risks,” Proceedings of the Twenty-Ninth Hawaii
International Conference on System Sciences, Maui,
Hawaii, January 1996.

Selby, R. W., Evaluations of Sofiare Technologies:
Testing, Cleanroom, and Metrics, Ph.D. thesis,
University of Maryland at College Park, Department
of Computer Science, 1985.

Tjahjono, Danu, Ph.D. student, University of Hawaii,
personal communication with the author, June 1995.
Results of dissertation research.

362

Proceedings of the 1996 Hawaii International Conference on System Sciences (HICSS-29)
1060-3425/96 $10.00 © 1996 IEEE

Proceedings qf the 29th Annual Hawaii International Conference on System Sciences - 1996

Dr. Raymond R. Panko Honolulu, HI 96822. His Internet email address is
panko@hawaii.edu. His telephone number is (808) 956-

Ray Panko is a fill professor of business administration
in the College of Business Administration of the
University of Hawaii. The address is 2404 Maile Way,

5049. His fax number is (808) 956-9889. His home page
is http://www.cba. hawaii.edw/panko

363

Proceedings of the 1996 Hawaii International Conference on System Sciences (HICSS-29)
1060-3425/96 $10.00 © 1996 IEEE

