////////////////////////////////////////////////////////////////////////////// // // --- mat.h --- // ////////////////////////////////////////////////////////////////////////////// #ifndef __MAT_H__ #define __MAT_H__ #include #include "vec.h" //---------------------------------------------------------------------------- // // mat2 - 2D square matrix // class mat2 { vec2 _m[2]; public: // // --- Constructors and Destructors --- // mat2( const GLfloat d = GLfloat(1.0) ) // Create a diagional matrix { _m[0].x = d; _m[1].y = d; } mat2( const vec2& a, const vec2& b ) { _m[0] = a; _m[1] = b; } mat2( GLfloat m00, GLfloat m10, GLfloat m01, GLfloat m11 ) { _m[0] = vec2( m00, m01 ); _m[1] = vec2( m10, m11 ); } mat2( const mat2& m ) { if ( *this != m ) { _m[0] = m._m[0]; _m[1] = m._m[1]; } } // // --- Indexing Operator --- // vec2& operator [] ( int i ) { return _m[i]; } const vec2& operator [] ( int i ) const { return _m[i]; } // // --- (non-modifying) Arithmatic Operators --- // mat2 operator + ( const mat2& m ) const { return mat2( _m[0]+m[0], _m[1]+m[1] ); } mat2 operator - ( const mat2& m ) const { return mat2( _m[0]-m[0], _m[1]-m[1] ); } mat2 operator * ( const GLfloat s ) const { return mat2( s*_m[0], s*_m[1] ); } mat2 operator / ( const GLfloat s ) const { #ifdef DEBUG if ( std::fabs(s) < DivideByZeroTolerance ) { std::cerr << "[" << __FILE__ << ":" << __LINE__ << "] " << "Division by zero" << std::endl; return mat2(); } #endif // DEBUG GLfloat r = GLfloat(1.0) / s; return *this * r; } friend mat2 operator * ( const GLfloat s, const mat2& m ) { return m * s; } mat2 operator * ( const mat2& m ) const { mat2 a( 0.0 ); for ( int i = 0; i < 2; ++i ) { for ( int j = 0; j < 2; ++j ) { for ( int k = 0; k < 2; ++k ) { a[i][j] += _m[i][k] * m[k][j]; } } } return a; } // // --- (modifying) Arithmetic Operators --- // mat2& operator += ( const mat2& m ) { _m[0] += m[0]; _m[1] += m[1]; return *this; } mat2& operator -= ( const mat2& m ) { _m[0] -= m[0]; _m[1] -= m[1]; return *this; } mat2& operator *= ( const GLfloat s ) { _m[0] *= s; _m[1] *= s; return *this; } mat2& operator *= ( const mat2& m ) { mat2 a( 0.0 ); for ( int i = 0; i < 2; ++i ) { for ( int j = 0; j < 2; ++j ) { for ( int k = 0; k < 2; ++k ) { a[i][j] += _m[i][k] * m[k][j]; } } } *this = a; } mat2& operator /= ( const GLfloat s ) { #ifdef DEBUG if ( std::fabs(s) < DivideByZeroTolerance ) { std::cerr << "[" << __FILE__ << ":" << __LINE__ << "] " << "Division by zero" << std::endl; return mat2(); } #endif // DEBUG GLfloat r = GLfloat(1.0) / s; return *this *= r; } // // --- Matrix / Vector operators --- // vec2 operator * ( const vec2& v ) const { // m * v return vec2( _m[0][0]*v.x + _m[0][1]*v.y, _m[1][0]*v.x + _m[1][1]*v.y ); } // // --- Insertion and Extraction Operators --- // friend std::ostream& operator << ( std::ostream& os, const mat2& m ) { return os << std::endl << m[0] << std::endl << m[1] << std::endl; } friend std::istream& operator >> ( std::istream& is, mat2& m ) { return is >> m._m[0] >> m._m[1] ; } // // --- Conversion Operators --- // operator const GLfloat* () const { return static_cast( &_m[0].x ); } operator GLfloat* () { return static_cast( &_m[0].x ); } }; // // --- Non-class mat2 Methods --- // inline mat2 matrixCompMult( const mat2& A, const mat2& B ) { return mat2( A[0][0]*B[0][0], A[0][1]*B[0][1], A[1][0]*B[1][0], A[1][1]*B[1][1] ); } inline mat2 transpose( const mat2& A ) { return mat2( A[0][0], A[1][0], A[0][1], A[1][1] ); } //---------------------------------------------------------------------------- // // mat3 - 3D square matrix // class mat3 { vec3 _m[3]; public: // // --- Constructors and Destructors --- // mat3( const GLfloat d = GLfloat(1.0) ) // Create a diagional matrix { _m[0].x = d; _m[1].y = d; _m[2].z = d; } mat3( const vec3& a, const vec3& b, const vec3& c ) { _m[0] = a; _m[1] = b; _m[2] = c; } mat3( GLfloat m00, GLfloat m10, GLfloat m20, GLfloat m01, GLfloat m11, GLfloat m21, GLfloat m02, GLfloat m12, GLfloat m22 ) { _m[0] = vec3( m00, m01, m02 ); _m[1] = vec3( m10, m11, m12 ); _m[2] = vec3( m20, m21, m22 ); } mat3( const mat3& m ) { if ( *this != m ) { _m[0] = m._m[0]; _m[1] = m._m[1]; _m[2] = m._m[2]; } } // // --- Indexing Operator --- // vec3& operator [] ( int i ) { return _m[i]; } const vec3& operator [] ( int i ) const { return _m[i]; } // // --- (non-modifying) Arithmatic Operators --- // mat3 operator + ( const mat3& m ) const { return mat3( _m[0]+m[0], _m[1]+m[1], _m[2]+m[2] ); } mat3 operator - ( const mat3& m ) const { return mat3( _m[0]-m[0], _m[1]-m[1], _m[2]-m[2] ); } mat3 operator * ( const GLfloat s ) const { return mat3( s*_m[0], s*_m[1], s*_m[2] ); } mat3 operator / ( const GLfloat s ) const { #ifdef DEBUG if ( std::fabs(s) < DivideByZeroTolerance ) { std::cerr << "[" << __FILE__ << ":" << __LINE__ << "] " << "Division by zero" << std::endl; return mat3(); } #endif // DEBUG GLfloat r = GLfloat(1.0) / s; return *this * r; } friend mat3 operator * ( const GLfloat s, const mat3& m ) { return m * s; } mat3 operator * ( const mat3& m ) const { mat3 a( 0.0 ); for ( int i = 0; i < 3; ++i ) { for ( int j = 0; j < 3; ++j ) { for ( int k = 0; k < 3; ++k ) { a[i][j] += _m[i][k] * m[k][j]; } } } return a; } // // --- (modifying) Arithmetic Operators --- // mat3& operator += ( const mat3& m ) { _m[0] += m[0]; _m[1] += m[1]; _m[2] += m[2]; return *this; } mat3& operator -= ( const mat3& m ) { _m[0] -= m[0]; _m[1] -= m[1]; _m[2] -= m[2]; return *this; } mat3& operator *= ( const GLfloat s ) { _m[0] *= s; _m[1] *= s; _m[2] *= s; return *this; } mat3& operator *= ( const mat3& m ) { mat3 a( 0.0 ); for ( int i = 0; i < 3; ++i ) { for ( int j = 0; j < 3; ++j ) { for ( int k = 0; k < 3; ++k ) { a[i][j] += _m[i][k] * m[k][j]; } } } *this = a; } mat3& operator /= ( const GLfloat s ) { #ifdef DEBUG if ( std::fabs(s) < DivideByZeroTolerance ) { std::cerr << "[" << __FILE__ << ":" << __LINE__ << "] " << "Division by zero" << std::endl; return mat3(); } #endif // DEBUG GLfloat r = GLfloat(1.0) / s; return *this *= r; } // // --- Matrix / Vector operators --- // vec3 operator * ( const vec3& v ) const { // m * v return vec3( _m[0][0]*v.x + _m[0][1]*v.y + _m[0][2]*v.z, _m[1][0]*v.x + _m[1][1]*v.y + _m[1][2]*v.z, _m[2][0]*v.x + _m[2][1]*v.y + _m[2][2]*v.z ); } // // --- Insertion and Extraction Operators --- // friend std::ostream& operator << ( std::ostream& os, const mat3& m ) { return os << std::endl << m[0] << std::endl << m[1] << std::endl << m[2] << std::endl; } friend std::istream& operator >> ( std::istream& is, mat3& m ) { return is >> m._m[0] >> m._m[1] >> m._m[2] ; } // // --- Conversion Operators --- // operator const GLfloat* () const { return static_cast( &_m[0].x ); } operator GLfloat* () { return static_cast( &_m[0].x ); } }; // // --- Non-class mat3 Methods --- // inline mat3 matrixCompMult( const mat3& A, const mat3& B ) { return mat3( A[0][0]*B[0][0], A[0][1]*B[0][1], A[0][2]*B[0][2], A[1][0]*B[1][0], A[1][1]*B[1][1], A[1][2]*B[1][2], A[2][0]*B[2][0], A[2][1]*B[2][1], A[2][2]*B[2][2] ); } inline mat3 transpose( const mat3& A ) { return mat3( A[0][0], A[1][0], A[2][0], A[0][1], A[1][1], A[2][1], A[0][2], A[1][2], A[2][2] ); } //---------------------------------------------------------------------------- // // mat4.h - 4D square matrix // class mat4 { vec4 _m[4]; public: // // --- Constructors and Destructors --- // mat4( const GLfloat d = GLfloat(1.0) ) // Create a diagional matrix { _m[0].x = d; _m[1].y = d; _m[2].z = d; _m[3].w = d; } mat4( const vec4& a, const vec4& b, const vec4& c, const vec4& d ) { _m[0] = a; _m[1] = b; _m[2] = c; _m[3] = d; } mat4( GLfloat m00, GLfloat m10, GLfloat m20, GLfloat m30, GLfloat m01, GLfloat m11, GLfloat m21, GLfloat m31, GLfloat m02, GLfloat m12, GLfloat m22, GLfloat m32, GLfloat m03, GLfloat m13, GLfloat m23, GLfloat m33 ) { _m[0] = vec4( m00, m01, m02, m03 ); _m[1] = vec4( m10, m11, m12, m13 ); _m[2] = vec4( m20, m21, m22, m23 ); _m[3] = vec4( m30, m31, m32, m33 ); } mat4( const mat4& m ) { if ( *this != m ) { _m[0] = m._m[0]; _m[1] = m._m[1]; _m[2] = m._m[2]; _m[3] = m._m[3]; } } // // --- Indexing Operator --- // vec4& operator [] ( int i ) { return _m[i]; } const vec4& operator [] ( int i ) const { return _m[i]; } // // --- (non-modifying) Arithematic Operators --- // mat4 operator + ( const mat4& m ) const { return mat4( _m[0]+m[0], _m[1]+m[1], _m[2]+m[2], _m[3]+m[3] ); } mat4 operator - ( const mat4& m ) const { return mat4( _m[0]-m[0], _m[1]-m[1], _m[2]-m[2], _m[3]-m[3] ); } mat4 operator * ( const GLfloat s ) const { return mat4( s*_m[0], s*_m[1], s*_m[2], s*_m[3] ); } mat4 operator / ( const GLfloat s ) const { #ifdef DEBUG if ( std::fabs(s) < DivideByZeroTolerance ) { std::cerr << "[" << __FILE__ << ":" << __LINE__ << "] " << "Division by zero" << std::endl; return mat4(); } #endif // DEBUG GLfloat r = GLfloat(1.0) / s; return *this * r; } friend mat4 operator * ( const GLfloat s, const mat4& m ) { return m * s; } mat4 operator * ( const mat4& m ) const { mat4 a( 0.0 ); for ( int i = 0; i < 4; ++i ) { for ( int j = 0; j < 4; ++j ) { for ( int k = 0; k < 4; ++k ) { a[i][j] += _m[i][k] * m[k][j]; } } } return a; } // // --- (modifying) Arithematic Operators --- // mat4& operator += ( const mat4& m ) { _m[0] += m[0]; _m[1] += m[1]; _m[2] += m[2]; _m[3] += m[3]; return *this; } mat4& operator -= ( const mat4& m ) { _m[0] -= m[0]; _m[1] -= m[1]; _m[2] -= m[2]; _m[3] -= m[3]; return *this; } mat4& operator *= ( const GLfloat s ) { _m[0] *= s; _m[1] *= s; _m[2] *= s; _m[3] *= s; return *this; } mat4& operator *= ( const mat4& m ) { mat4 a( 0.0 ); for ( int i = 0; i < 4; ++i ) { for ( int j = 0; j < 4; ++j ) { for ( int k = 0; k < 4; ++k ) { a[i][j] += _m[i][k] * m[k][j]; } } } *this = a; return *this; } mat4& operator /= ( const GLfloat s ) { #ifdef DEBUG if ( std::fabs(s) < DivideByZeroTolerance ) { std::cerr << "[" << __FILE__ << ":" << __LINE__ << "] " << "Division by zero" << std::endl; return mat4(); } #endif // DEBUG GLfloat r = GLfloat(1.0) / s; return *this *= r; } // // --- Matrix / Vector operators --- // vec4 operator * ( const vec4& v ) const { // m * v return vec4( _m[0][0]*v.x + _m[0][1]*v.y + _m[0][2]*v.z + _m[0][3]*v.w, _m[1][0]*v.x + _m[1][1]*v.y + _m[1][2]*v.z + _m[1][3]*v.w, _m[2][0]*v.x + _m[2][1]*v.y + _m[2][2]*v.z + _m[2][3]*v.w, _m[3][0]*v.x + _m[3][1]*v.y + _m[3][2]*v.z + _m[3][3]*v.w ); } // // --- Insertion and Extraction Operators --- // friend std::ostream& operator << ( std::ostream& os, const mat4& m ) { return os << std::endl << m[0] << std::endl << m[1] << std::endl << m[2] << std::endl << m[3] << std::endl; } friend std::istream& operator >> ( std::istream& is, mat4& m ) { return is >> m._m[0] >> m._m[1] >> m._m[2] >> m._m[3]; } // // --- Conversion Operators --- // operator const GLfloat* () const { return static_cast( &_m[0].x ); } operator GLfloat* () { return static_cast( &_m[0].x ); } }; // // --- Non-class mat4 Methods --- // inline mat4 matrixCompMult( const mat4& A, const mat4& B ) { return mat4( A[0][0]*B[0][0], A[0][1]*B[0][1], A[0][2]*B[0][2], A[0][3]*B[0][3], A[1][0]*B[1][0], A[1][1]*B[1][1], A[1][2]*B[1][2], A[1][3]*B[1][3], A[2][0]*B[2][0], A[2][1]*B[2][1], A[2][2]*B[2][2], A[2][3]*B[2][3], A[3][0]*B[3][0], A[3][1]*B[3][1], A[3][2]*B[3][2], A[3][3]*B[3][3] ); } inline mat4 transpose( const mat4& A ) { return mat4( A[0][0], A[1][0], A[2][0], A[3][0], A[0][1], A[1][1], A[2][1], A[3][1], A[0][2], A[1][2], A[2][2], A[3][2], A[0][3], A[1][3], A[2][3], A[3][3] ); } ////////////////////////////////////////////////////////////////////////////// // // Helpful Matrix Methods // ////////////////////////////////////////////////////////////////////////////// #define Error( str ) do { std::cerr << "[" __FILE__ ":" << __LINE__ << "] " \ << str << std::endl; } while(0) inline vec4 mvmult( const mat4& a, const vec4& b ) { Error( "replace with vector matrix multiplcation operator" ); vec4 c; int i, j; for(i=0; i<4; i++) { c[i] =0.0; for(j=0;j<4;j++) c[i]+=a[i][j]*b[j]; } return c; } //---------------------------------------------------------------------------- // // Rotation matrix generators // inline mat4 RotateX( const GLfloat theta ) { GLfloat angle = DegreesToRadians * theta; mat4 c; c[2][2] = c[1][1] = cos(angle); c[2][1] = sin(angle); c[1][2] = -c[2][1]; return c; } inline mat4 RotateY( const GLfloat theta ) { GLfloat angle = DegreesToRadians * theta; mat4 c; c[2][2] = c[0][0] = cos(angle); c[0][2] = sin(angle); c[2][0] = -c[0][2]; return c; } inline mat4 RotateZ( const GLfloat theta ) { GLfloat angle = DegreesToRadians * theta; mat4 c; c[0][0] = c[1][1] = cos(angle); c[1][0] = sin(angle); c[0][1] = -c[1][0]; return c; } //---------------------------------------------------------------------------- // // Translation matrix generators // inline mat4 Translate( const GLfloat x, const GLfloat y, const GLfloat z ) { mat4 c; c[0][3] = x; c[1][3] = y; c[2][3] = z; return c; } inline mat4 Translate( const vec3& v ) { return Translate( v.x, v.y, v.z ); } inline mat4 Translate( const vec4& v ) { return Translate( v.x, v.y, v.z ); } //---------------------------------------------------------------------------- // // Scale matrix generators // inline mat4 Scale( const GLfloat x, const GLfloat y, const GLfloat z ) { mat4 c; c[0][0] = x; c[1][1] = y; c[2][2] = z; return c; } inline mat4 Scale( const vec3& v ) { return Scale( v.x, v.y, v.z ); } //---------------------------------------------------------------------------- // // Projection transformation matrix geneartors // // Note: Microsoft Windows (r) defines the keyword "far" in C/C++. In // order to avoid any name conflicts, we use the variable names // "zNear" to reprsent "near", and "zFar" to reprsent "far". // inline mat4 Ortho( const GLfloat left, const GLfloat right, const GLfloat bottom, const GLfloat top, const GLfloat zNear, const GLfloat zFar ) { mat4 c; c[0][0] = 2.0f/(right - left); c[1][1] = 2.0f/(top - bottom); c[2][2] = 2.0f/(zNear - zFar); c[3][3] = 1.0f; c[0][3] = -(right + left)/(right - left); c[1][3] = -(top + bottom)/(top - bottom); c[2][3] = -(zFar + zNear)/(zFar - zNear); return c; } inline mat4 Ortho2D( const GLfloat left, const GLfloat right, const GLfloat bottom, const GLfloat top ) { return Ortho( left, right, bottom, top, -1.0, 1.0 ); } inline mat4 Frustum( const GLfloat left, const GLfloat right, const GLfloat bottom, const GLfloat top, const GLfloat zNear, const GLfloat zFar ) { mat4 c; c[0][0] = 2.0f*zNear/(right - left); c[0][2] = (right + left)/(right - left); c[1][1] = 2.0f*zNear/(top - bottom); c[1][2] = (top + bottom)/(top - bottom); c[2][2] = -(zFar + zNear)/(zFar - zNear); c[2][3] = -2.0f*zFar*zNear/(zFar - zNear); c[3][2] = -1.0f; return c; } inline mat4 Perspective( const GLfloat fovy, const GLfloat aspect, const GLfloat zNear, const GLfloat zFar) { GLfloat top = tan(fovy*DegreesToRadians/2) * zNear; GLfloat right = top * aspect; mat4 c; c[0][0] = zNear/right; c[1][1] = zNear/top; c[2][2] = -(zFar + zNear)/(zFar - zNear); c[2][3] = -2.0f*zFar*zNear/(zFar - zNear); c[3][2] = -1.0f; return c; } //---------------------------------------------------------------------------- // // Viewing transformation matrix generation // inline mat4 LookAt( const vec4& eye, const vec4& at, const vec4& up ) { vec4 n = normalize(eye - at); vec4 u = normalize(cross(up,n)); vec4 v = normalize(cross(n,u)); vec4 t = vec4(0.0, 0.0, 0.0, 1.0); mat4 c = mat4(u, v, n, t); return c * Translate( -eye ); } //---------------------------------------------------------------------------- #endif // __MAT_H__