$\require{cancel}$
(wikipedia)
| Value | 2 bit | 3 bit | 4 bit | binary |
| 0 | 00 | 000 | 0000 | 0000 |
| 1 | 01 | 001 | 0001 | 0001 |
| 2 | 11 | 011 | 0011 | 0010 |
| 3 | 10 | 010 | 0010 | 0011 |
| 4 | 110 | 0110 | 0100 | |
| 5 | 111 | 0111 | 0101 | |
| 6 | 101 | 0101 | 0110 | |
| 7 | 100 | 0100 | 0111 | |
| 8 | 1100 | 1000 | ||
| 9 | 1101 | 1001 | ||
| 10 | 1111 | 1010 | ||
| 11 | 1110 | 1011 | ||
| 12 | 1010 | 1100 | ||
| 13 | 1011 | 1101 | ||
| 14 | 1001 | 1110 | ||
| 15 | 1000 | 1111 |
Convert 13 to gray code
11012 =
G3 = B3 = 1
G2 = B3 ⊕ B2
= 1 ⊕ 1 = 0
G1 = B2 ⊕ B1
= 1 ⊕ 0 = 1
G0 = B1 ⊕ B0
= 0 ⊕ 1 = 1
= 1011gray
Convert 10 to gray code
10102
G3 = B3 = 1
G2 = B3 ⊕ B2
= 1 ⊕ 0 = 1
G1 = B2 ⊕ B1
= 0 ⊕ 1 = 1
G0 = B1 ⊕ B0
= 1 ⊕ 0 = 1
= 1111gray
Convert 1001gray to binary
1001gray =
B3 = G3 = 1
B2 = B3 ⊕ G2
= 1 ⊕ 0 = 1
B1 = B2 ⊕ G1
= 1 ⊕ 0 = 1
B0 = B1 ⊕ G0
= 1 ⊕ 1 = 0
= 11102