$\require{cancel}$
a | b | a·b | a·b | a·b | ab |
---|---|---|---|---|---|
0 | 0 | 1 | 0 | 0 | 0 |
0 | 1 | 0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 | 1 | 0 |
1 | 1 | 0 | 0 | 0 | 1 |
a | b | a·b | a·b | a ⊕ b |
---|---|---|---|---|
0 | 0 | 0 | 0 | 0 |
0 | 1 | 1 | 0 | 1 |
1 | 0 | 0 | 1 | 1 |
1 | 1 | 0 | 0 | 0 |
and
and not
a | b | a⊕b | Minterm | |
---|---|---|---|---|
0 | 0 | 0 | ||
0 | 1 | 1 | ab, m1 | |
1 | 0 | 1 | ab, m2 | |
1 | 1 | 0 |
or
and not
not
is only applied to individual terms.
a | b | a⊕b | Minterm | |
---|---|---|---|---|
0 | 0 | 0 | a + b, M0 | |
0 | 1 | 1 | ||
1 | 0 | 1 | ||
1 | 1 | 0 | a + b, M3 |
a | b | a+b | a + b | (a+b)( a + b) | |
---|---|---|---|---|---|
0 | 0 | 0 | 1 | 0 | |
0 | 1 | 1 | 1 | 1 | |
1 | 0 | 1 | 1 | 1 | |
1 | 1 | 1 | 0 | 0 |
(a + b)( a + b) = a·a + a·b + b·a + b·b = 1 + a·b + b·a + 1 = a·b + b·a
a | b | a + b | a + b | a + b | a + b |
---|---|---|---|---|---|
0 | 0 | 0 | 1 | 1 | 1 |
0 | 1 | 1 | 0 | 1 | 1 |
1 | 0 | 1 | 1 | 0 | 1 |
1 | 1 | 1 | 1 | 1 | 0 |
a | b | c | d | c | c + d | a(c + d) | cbd | a(c+d)+cbd |
---|---|---|---|---|---|---|---|---|
0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 |
0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 |
0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 |
1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 |
1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 |
1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 |
1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 |
a(c+d)+cbd = ac+ ad + cbd
ac+ ad + cbd = ac(b + b) + ad + cbd = acb + ac·b + ad + cbd = abc + ab·c + ad + cbd = abc(d + d) + ab·c + ad + cbd = abcd + abc·d + ab·c + ad + cbd = m13 + m12 + ab·c + ad + cbd = m13 + m12 + ab·c(d + d) + ad + cbd = m12 + m13 + ab·cd + ab·c·d + ad + cbd = m12 + m13 + m9 + m8 + ad + cbd = m8 + m9 + m12 + m13 + ad(c + c) + cbd(a + a) = m8 + m9 + m12 + m13 + adc + adc + cbda + cbda = m8 + m9 + m12 + m13 + adc + adc + abcd + abcd = m8 + m9 + m12 + m13 + adc + adc + m13 + m5 = m5 + m8 + m9 + m12 + m13 + acd + acd = m5 + m8 + m9 + m12 + m13 + acd(b+b) + acd(b+b) = m5 + m8 + m9 + m12 + m13 + acdb+acdb + acdb+ acdb = m5 + m8 + m9 + m12 + m13 + abcd + abcd + abcb+ ab·cd = m5 + m8 + m9 + m12 + m13 + m15 + m11 + m13+ m9 = m5 + m8 + m9 + m11 + m12 + m13 + m15 = Σm(5,8,9,11,12,13,15)