
Contents

Listings 1

1 Introduction 5

2 Architecture 7
2.1 Hardware Description . 7

2.1.1 Registers . 7
2.2 Other Hardware Components 8
2.3 Register Transfer Notation . 8
2.4 Instruction Set . 9

3 Assembler 11
3.1 Comments . 11
3.2 Numeric Literals (numbers) 11
3.3 Mnemonics . 12
3.4 Labels . 12
3.5 Data . 12
3.6 Invoking the Assembler . 13
3.7 Example Code . 13
3.8 Error Messages . 19

4 Simulator 21

1

2 CONTENTS

Listings

3.1 bigger.a, code to print the larger of two numbers 13
3.2 power.a, code to compute i2 for i <= 10 14
3.3 random.a, a program to generate 10 random numbers 15
3.4 SimpleArray.a, a program to demonstrate array access 16

3

4 LISTINGS

Chapter 1

Introduction

The Wombat simulator is based on a design by Dale Skrien. The design is an
example architecture for his CPU Sim simulator. This version was adapted
by Dan Bennett with the addition of several instructions.

5

6 CHAPTER 1. INTRODUCTION

Chapter 2

Architecture

Memory
Input/Output
ALU
Control Unit

2.1 Hardware Description

The Wombat hardware consists of one general purpose register, called an ac-
cumulator, four special purpose registers, a control unit, an ALU (or Arith-
metic Logic Unit), and an internal bus. Associated with the CPU is a mem-
ory, and an I/O unit. The instruction set consists of 15 instructions, requiring
an opcode of 4 bits, with 12 bits of the 16 bit word remaining for operands.
This limits the addressable memory to 212 bytes.

Memory is byte addressable, but all instructions must be word aligned.
Furthermore all data access is performed on word aligned boundaries on word
sized data.

2.1.1 Registers

The register set consists of the accumulator (ACC) , the instruction regis-
ter (IR), the program counter (PC), the memory address register (MAR),
and the memory data register (MDR). Input and output are accomplished
through the input register (inREG) and output register (outREG). All regis-
ters are 16 bits wide and are initialized to zero. Each register will be discussed

7

8 CHAPTER 2. ARCHITECTURE

in turn.

The accumulator is only general purpose register available. It is the
target for all computations, input and memory loads. The value stored in
the accumulator is the left hand source for all arithmetic operations, memory
stores and output. The accumulator is initialized to zero. The ACC supports
direct transfer to and from the ALU.

The program counter contains the address of the next instruction to be
fetched. Initialized to 0, this register supports increment by two.

The instruction register holds the current instruction. This register sup-
ports extraction of the opcode or top four (12-15) and, operand or bottom
12 (0-11) bits of a word.

The MAR holds the address for memory access. This is a portion of the
memory management unit (MMU). This register can be loaded from either
the bus or from the MDR.

The MDR holds data transferred to, or from memory. The MDR can
read and write to the bus, but also supports direct transfer to the MAR.

2.2 Other Hardware Components

Wombat’s memory is byte addressable, however all transfers are performed
at the word level, on word aligned boundaries. This is a big-endian machine,
so bits 8through 11 are stored in the even byte and bits 0 through 7 are
stored in the odd byte.

Memory files are stored in a format compatible with version 2.0 of Tk-
Gate. In this case, each block of values is proceeded by a block header in
the form ”address”. The address is given in hexadecimal. The block header
is the only entry on the line. A block of data, in hexadecimal, follows the
heading. Data should be words (16 bits) delimited by spaces. A data block
ends with a blank line. Figure 2.1 is the compiled version of the example
program bigger.

2.3 Register Transfer Notation

Register Transfer Notation (RTN) used for this document employs the fol-
lowing conventions.

2.4. INSTRUCTION SET 9

Figure 2.1: Memory File for Program Bigger

@0

3000 2016 3000 2018 6016 a010 1018 b012 1016 4000

0 0 0

• Register names (ACC, PC, IR, MAR, MDR, ...) are used to represent
the registers.

• Subscripted registers represent the specified bits in that register. Ir[0..11]
represents the operand, bits 0 through 11 of the instruction register.

• The bus (BUS) is treated as a register.

• Memory is represented as the array M. M[0] represents memory location
0.

• The assignment operator ← moves a value from the location on the
right hand side to the location on the left hand side. ACC ← BUS
represents moving the value on the bus to the accumulator.

• Basic arithmetic operations are represented by the following symbols:
{+,-,*,/}. A generic operation is specified by op. PC+2 represents
adding two to the PC, while ACC op BUS represents performing an op-
eration (specified by control codes) on values stored in the accumulator
and the bus.

• Input reads a 2 byte signed integer from the input device to inREG.

• Output writes a 2 byte signed integer from the outREG to the output
device.

• Conditional branches are evaluated using the if (expression) operation

format.

2.4 Instruction Set

Table 2.1 instructions are supported in the enhanced wombat instruction set.

10 CHAPTER 2. ARCHITECTURE

Mnemonic OpCode Operand Operand Bits RTN

STOP 0 Stop Execution
LOAD 1 address 0 through 11 ACC ← M[address]

STORE 2 address 0 through 11 M[address] ← ACC
READ 3 Input

ACC ← inREG
WRITE 4 outREG ← ACC

Output
ADD 5 address 0 through 11 ACC ← ACC + M[address]

SUBTRACT 6 address 0 through 11 ACC ← ACC - M[address]
MULTIPLY 7 address 0 through 11 ACC ← ACC * M[address]

DIVIDE 8 address 0 through 11 ACC ← ACC / M[address]
JMPZ 9 address 0 through 11 if (ACC == 0)

PC ← address
JMPN A address 0 through 11 if (ACC < 0)

PC ← address
JMP B address 0 through 11 PC ← address

ADDI C immediate 0 through 11 ACC ← ACC + immediate
LOADI D address 0 through 11 ACC ← M[M[address]]

STOREI E address 0 through 11 M[M[address]] ← ACC

Table 2.1: The WOMBAT instruction set

Chapter 3

Assembler

The assembler is currently in beta version. It has weak syntax error diag-
nostic reporting.

The assembler is line oriented and only one instruction is permitted per
line. All elements are delimited by white space.

The general form of an assembly line are:

[label:] [mnemonic [label | number]] [comment]

label: .data number number [comment]

3.1 Comments

Comments begin with either a semicolon (;) or with two slashes (//) and end
with the end of the line. As such, a comment must be the last item on a line.

3.2 Numeric Literals (numbers)

The assembler supports signed integer literals in four formats: binary, octal,
decimal and hex. Decimal values are the default and are represented as
integers. Rules for encoding other values are given in table 3.1

3.3 Mnemonics

The instruction set is given in table 2.1 with Mnemonics listed in the first
column. Mnemonics are case insensitive but must be delimited by white

11

12 CHAPTER 3. ASSEMBLER

Format Prefix Example
Binary bx -bx0011001000001001

Octal ox ox1734
Decimal -1234

Hexadecimal hx hx3245

Table 3.1: WAS Number Representation

space.

3.4 Labels

Labels are case sensitive, must begin with an alpha character and contain
only letters, digits and the underscore. A label must not be a reserved word.
Labels can be used in place of any operand. All labels must be resolved in
the first pass of the assembler.

In order for a label to be resolved, it must be declared. Labels are declared
as an optional first element of a line. A label declaration consists of a legal
label followed by a colon. Multiple labels can point to the same address.

3.5 Data

Data is declared with a data line. Such a line must begin with a label, contain
the assembly directive .data, a size (in bytes) and a value. The byte size
must be even. All words are assigned the same value.

The directive:

foo: .data 6 -1

sets aside three words (6 bytes) at the current memory location. Each word
is initialized to -1.

3.6 Invoking the Assembler

The current version of the assembler expects the filename of the source code
to be the last argument given. Other arguments are listed in table 3.2.

Examples of command line use include:

3.7. EXAMPLE CODE 13

Flag Arguments Explanation
-o output file name The default output file is a.out. This flag will override

the default and use the next argument as the output file
name.

-v Verbose. A small amount of diagnostic information is
printed when the -v flag is used.

-t Symbol Table. Print the labels encountered in the pro-
gram along with addresses.

Table 3.2: WAS Command Line Arguments

was bigger.a

Assembles bigger.a to produce the executable file a.out.

was -o bigger bigger.a

Assembles bigger.a to produce the executable file bigger.

3.7 Example Code

The following code examples represent the test cases for the was assembler.
The source code for these programs in available in the progs directory in the
WOMBAT source code tree.

Please note, the text processing package may have wrapped some of the
lines in the code listing in this document. Comments extending over multiple
lines are not legal in WOMBAT assembly.

;
; This program w i l l read in two va lue s and pr in t out the

b igge r
;

; read and s t o r e the f i r s t number
read
s t o r e a

; read and s t o r e the second number
read

14 CHAPTER 3. ASSEMBLER

s t o r e b

; subt rac t acc = b−a
; i f acc < 0 then a> b , e l s e b>= a

subt rac t a
jmpn bigA

; b i s b igger , so load b f o r output
load b
jmp end

; a i s b igger , so load a f o r output
bigA : load a

; p r i n t the b igge r number
end : wr i t e

; e x i t
stop

; s t o rage f o r the numbers
a : . data 2 0
b : . data 2 0

Listing 3.1: bigger.a, code to print the larger of two numbers

This program will read two values from the user and print the larger of
the two.

load zero ; i n i t i a l i z e the LCV
Loop :

s t o r e LCV ; s t o r e the LCV
subt rac t maxsize ; i f l c v >= MAXSIZE
jmpz END ; e x i t the program
load LCV ; tmp = lcv ∗ l c v
mult ip ly LCV
wr i t e ; cout << tmp
load LCV ; l cv ++
addi 1
jmp Loop

END: stop

3.7. EXAMPLE CODE 15

zero : . data 2 0
LCV: . data 2 0
maxsize : . data 2 10 ;

Listing 3.2: power.a, code to compute i2 for i <= 10

A simple looping program to compute i2 for 0 <= i <= 10. This pro-
gram demonstrates use of a loop control variable (LCV), the addi and jmpz
instructions.

; t h i s program w i l l attempt to emulate a random number
generato r

;

read
s t o r e RNG seed
; i = 0
load zero
s t o r e i

Loop :
load i
subt rac t max
jmpz EXIT

; seed ∗ a + c
load RNG seed
mult ip ly RNG A
add RNG C
s t o r e RNG seed

; seed % m <−> seed − (seed /m) ∗m
div ide RNGM
MULTIPLY RNGM
sto r e RNGTMP
load RNG seed
subt rac t RNGTMP
s to r e RNG seed

// done with RNG
wr i t e
load i

16 CHAPTER 3. ASSEMBLER

addi 1
s t o r e i
jmp Loop

EXIT : stop

; data f o r the main loop
zero : . data 2 0
i : . data 2 0
max : . data 2 10

; data area f o r the RNG
RNG seed : . data 2 0
RNG A: . data 2 41 ; (a−1) should be d i v i s a b l e by

a l l prime f a c t o r s o f m
RNG C: . data 2 17 ; c and m should be r e l a t i v e l y

prime
RNGM: . data 2 100
RNGTMP: . data 2 0

Listing 3.3: random.a, a program to generate 10 random numbers

This program uses the Linear congenital method for random number gen-
eration. (Xn+1 ≡ (aXn + c)%m). The program asks the user for a seed value
and generates ten random values based upon that seed.

; This program w i l l compute the squares o f the numbers 0
through 19

; But i t w i l l do i t by s t o r i n g the va lue s in an array and
then squar ing

; each entry in to the array
;
; I t w i l l f i n i s h by p r i n t i n g the array

; i n i t i a l i z e the array
; f o r (i =0; i<s i z e ; i++) {
; array [i] = i
; }

Loop1 :
load i ; load l cv

3.7. EXAMPLE CODE 17

subt rac t s i z e ; subt rac t the upper l im i t
jmpz Loop1E ; branch i f the two are equal , (

e x i t loop)

load i ; load i
add i ; (2 i)
addi array ; compute the e f f e c t i v e address (

base + 2∗ i)
s t o r e address

load i
s t o r e i address ; m[address] = i
addi 1 ; i++
s t o r e i ; s t o r e the new l cv back to i
jmp Loop1

Loop1E :

; Now step through and square a l l e lements in the array
; f o r (i =0; i<s i z e ; i++) {
; array [i] ∗= array [i]
; }

load i ; i = 0
subt rac t i
s t o r e i

Loop2 :
load i ; i f i == s i z e
subt rac t s i z e
jmpz Loop2E ; end loop

load i ; address = base + 2∗ i
add i
addi array
s t o r e address

l o ad i address ; tmp = m[address]
s t o r e tmp ; tmp = tmp ∗ tmp
mult ip ly tmp

18 CHAPTER 3. ASSEMBLER

s t o r e i address ; m[address] = tmp∗ tmp

load i ; i++
addi 1
s t o r e i ;
jmp Loop2

Loop2E :

; f i n a l l y , p r i n t out the array

load i ; i = 0
subt rac t i
s t o r e i

Loop3 :
load i ; i f i == s i z e
subt rac t s i z e
jmpz EXIT ; end loop

load i
add i ; address = base + 2∗ i
addi array
s t o r e address

l o ad i address ;
wr i t e

load i ; i++
addi 1
s t o r e i ;
jmp Loop3

EXIT :
stop

// data s e c t i o n

i : . data 2 0
tmp : . data 2 0
s i z e : . data 2 20

3.8. ERROR MESSAGES 19

address : . data 2 0
array : . data 40 −1 ; i n i t i a l i z e the e n t i r e array

to be −1

Listing 3.4: SimpleArray.a, a program to demonstrate array access

This program demonstrates array access.

3.8 Error Messages

20 CHAPTER 3. ASSEMBLER

Chapter 4

Simulator

There are two version of the simulator. An instruction level based simulator
and a microcode level GUI simulation.

21

